**小化對數(shù)損失基本等價于**大化分類器的準確度,對于完美的分類器,對數(shù)損失值為0。對數(shù)損失函數(shù)的計算公式如下:其中,y為輸出變量即輸出的測試樣本的檢測結(jié)果,x為輸入變量即測試樣本,l為損失函數(shù),n為測試樣本(待檢測軟件的二進制可執(zhí)行文件)數(shù)目,yij...
后端融合模型的10折交叉驗證的準確率是%,對數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種...
什么是軟件測試通過手工和自動化工具對被測對象進行檢測,驗證實際結(jié)果和預(yù)期結(jié)果之間的差異。軟件測試的原則1測試是為了證明軟件存在缺陷2測試應(yīng)該盡早介入3注意測試缺陷的群集效應(yīng)80-204殺蟲劑現(xiàn)象5合法數(shù)據(jù)和不合法數(shù)據(jù)和邊界值,網(wǎng)絡(luò)異常和電源斷電等6回歸...
在不知道多長的子序列能更好的表示可執(zhí)行文件的情況下,只能以固定窗口大小在字節(jié)碼序列中滑動,產(chǎn)生大量的短序列,由機器學(xué)習方法選擇可能區(qū)分惡意軟件和良性軟件的短序列作為特征,產(chǎn)生短序列的方法叫n-grams?!?80074ff13b2”的字節(jié)碼序列,如果以...
在不知道多長的子序列能更好的表示可執(zhí)行文件的情況下,只能以固定窗口大小在字節(jié)碼序列中滑動,產(chǎn)生大量的短序列,由機器學(xué)習方法選擇可能區(qū)分惡意軟件和良性軟件的短序列作為特征,產(chǎn)生短序列的方法叫n-grams?!?80074ff13b2”的字節(jié)碼序列,如果以...
將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;(1)方案一:采用前端融合(early-fusion)方法,首先合并訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖...
幫助客戶提升內(nèi)部技術(shù)團隊能力。例如,某三甲醫(yī)院在采用艾策科技的醫(yī)療信息化系統(tǒng)檢測方案后,不僅系統(tǒng)漏洞率下降45%,其IT團隊的安全意識與應(yīng)急響應(yīng)能力也提升。技術(shù)創(chuàng)新未來方向艾策科技創(chuàng)始人兼CTO表示:“作為軟件檢測公司,我們始終將技術(shù)創(chuàng)新視為競爭力。未...
以備實際測試嚴重偏離計劃時使用。在TMM的定義級,測試過程中引入計劃能力,在TMM的集成級,測試過程引入控制和監(jiān)視活動。兩者均為測試過程提供了可見性,為測試過程持續(xù)進行提供保證。第四級管理和測量級在管理和測量級,測試活動除測試被測程序外,還包括軟件生命...
保留了較多信息,同時由于操作數(shù)比較隨機,某種程度上又沒有抓住主要矛盾,干擾了主要語義信息的提取。pe文件即可移植文件導(dǎo)入節(jié)中的動態(tài)鏈接庫(dll)和應(yīng)用程序接口(api)信息能大致反映軟件的功能和性質(zhì),通過一個可執(zhí)行程序引用的dll和api信息可以粗略...
測試人員素質(zhì)要求1、責任心2、學(xué)習能力3、懷疑精神4、溝通能力5、專注力6、洞察力7、團隊精神8、注重積累軟件測試技術(shù)測試目的編輯軟件測試的目的是為了保證軟件產(chǎn)品的**終質(zhì)量,在軟件開發(fā)的過程中,對軟件產(chǎn)品進行質(zhì)量控制。一般來說軟件測試應(yīng)由**的產(chǎn)品評...
嘗試了前端融合、后端融合和中間融合三種融合方法對進行有效融合,有效提高了惡意軟件的準確率,具備較好的泛化性能和魯棒性。實驗結(jié)果顯示,相對**且互補的特征視圖和不同深度學(xué)習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優(yōu)的中間融合方法取得了...
將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;(1)方案一:采用前端融合(early-fusion)方法,首先合并訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖...
評審步驟以及評審記錄機制。3)評審項由上層****。通過培訓(xùn)參加評審的人員,使他們理解和遵循相牢的評審政策,評審步驟。(II)建立測試過程的測量程序測試過程的側(cè)量程序是評價測試過程質(zhì)量,改進測試過程的基礎(chǔ),對監(jiān)視和控制測試過程至關(guān)重要。測量包括測試進展...
**小化對數(shù)損失基本等價于**大化分類器的準確度,對于完美的分類器,對數(shù)損失值為0。對數(shù)損失函數(shù)的計算公式如下:其中,y為輸出變量即輸出的測試樣本的檢測結(jié)果,x為輸入變量即測試樣本,l為損失函數(shù),n為測試樣本(待檢測軟件的二進制可執(zhí)行文件)數(shù)目,yij...
optimizer)采用的是adagrad,batch_size是40。深度神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練基本都是基于梯度下降的,尋找函數(shù)值下降速度**快的方向,沿著下降方向迭代,迅速到達局部**優(yōu)解的過程就是梯度下降的過程。使用訓(xùn)練集中的全部樣本訓(xùn)練一次就是一個e...
幫助客戶提升內(nèi)部技術(shù)團隊能力。例如,某三甲醫(yī)院在采用艾策科技的醫(yī)療信息化系統(tǒng)檢測方案后,不僅系統(tǒng)漏洞率下降45%,其IT團隊的安全意識與應(yīng)急響應(yīng)能力也提升。技術(shù)創(chuàng)新未來方向艾策科技創(chuàng)始人兼CTO表示:“作為軟件檢測公司,我們始終將技術(shù)創(chuàng)新視為競爭力。未...
將三種模態(tài)特征和三種融合方法的結(jié)果進行了對比,如表3所示。從表3可以看出,前端融合和中間融合較基于模態(tài)特征的檢測準確率更高,損失率更低。后端融合是三種融合方法中較弱的,雖然明顯優(yōu)于基于dll和api信息、pe格式結(jié)構(gòu)特征的實驗結(jié)果,但稍弱于基于字節(jié)碼3...
optimizer)采用的是adagrad,batch_size是40。深度神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練基本都是基于梯度下降的,尋找函數(shù)值下降速度**快的方向,沿著下降方向迭代,迅速到達局部**優(yōu)解的過程就是梯度下降的過程。使用訓(xùn)練集中的全部樣本訓(xùn)練一次就是一個e...
本書內(nèi)容充實、實用性強,可作為高職高專院校計算機軟件軟件測試技術(shù)課程的教材,也可作為有關(guān)軟件測試的培訓(xùn)教材,對從事軟件測試實際工作的相關(guān)技術(shù)人員也具有一定的參考價值。目錄前言第1章軟件測試基本知識第2章測試計劃第3章測試設(shè)計和開發(fā)第4章執(zhí)行測試第5章測...
軟件測試技術(shù)測試分類編輯軟件測試的狹義論和廣義論——靜態(tài)和動態(tài)的測試軟件測試技術(shù)軟件測試的辨證論——正向思維和反向思維軟件測試的風險論——測試是評估軟件測試的經(jīng)濟學(xué)觀點——為盈利而測試軟件測試的標準論——驗證和確認軟件測試技術(shù)測試工具編輯幾種常用的測試...
嘗試了前端融合、后端融合和中間融合三種融合方法對進行有效融合,有效提高了惡意軟件的準確率,具備較好的泛化性能和魯棒性。實驗結(jié)果顯示,相對**且互補的特征視圖和不同深度學(xué)習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優(yōu)的中間融合方法取得了...
步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓(xùn)練樣本,基于多模態(tài)數(shù)據(jù)融合方法,將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;步驟s3、將軟件樣本中的類別未知的軟件樣本...
I)應(yīng)用過程數(shù)據(jù)預(yù)防缺陷。這時的軟件**能夠記錄軟件缺陷,分析缺陷模式,識別錯誤根源,制訂防止缺陷再次發(fā)生的計劃,提供**這種括動的辦法,并將這些活動貫穿于全**的各個項目中。應(yīng)用過程數(shù)據(jù)預(yù)防缺陷有礴個成熟度子目標:1)成立缺陷預(yù)防組。2)識別和記錄在...
***級初始級TMM初始級軟件測試過程的特點是測試過程無序,有時甚至是混亂的,幾乎沒有妥善定義的。初始級中軟件的測試與調(diào)試常常被混為一談,軟件開發(fā)過程中缺乏測試資源,工具以及訓(xùn)練有素的測試人員。初始級的軟件測試過程沒有定義成熟度目標。第二級定義級TMM...
當我們拿到一份第三方軟件測試報告的時候,我們可能會好奇第三方軟件檢測機構(gòu)是如何定義一份第三方軟件測試報告的費用呢,為何價格會存在一些差異,如何找到高性價比的第三方軟件測試機構(gòu)來出具第三方軟件檢測報告呢。我們可以從以下三個方面著手討論關(guān)于軟件檢測機構(gòu)的第...
嘗試了前端融合、后端融合和中間融合三種融合方法對進行有效融合,有效提高了惡意軟件的準確率,具備較好的泛化性能和魯棒性。實驗結(jié)果顯示,相對**且互補的特征視圖和不同深度學(xué)習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優(yōu)的中間融合方法取得了...
12)把節(jié)裝入到vmm的地址空間;(13)可選頭部的sizeofcode域取值不正確;(14)含有可疑標志。此外,惡意軟件和良性軟件間以下格式特征也存在明顯的統(tǒng)計差異:(1)證書表是軟件廠商的可認證的聲明,惡意軟件很少有證書表,而良性軟件大部分都有軟件...
降低成本對每個階段都進行測試,包括文檔,便于控制項目過程缺點依賴文檔,沒有文檔的項目無法使用,復(fù)雜度很高,實踐需要很強的管理H模型把測試活動完全**出來,將測試準備和測試執(zhí)行體現(xiàn)出來測試準備-測試執(zhí)行就緒點其他流程----------設(shè)計等v模型適用于...
保留了較多信息,同時由于操作數(shù)比較隨機,某種程度上又沒有抓住主要矛盾,干擾了主要語義信息的提取。pe文件即可移植文件導(dǎo)入節(jié)中的動態(tài)鏈接庫(dll)和應(yīng)用程序接口(api)信息能大致反映軟件的功能和性質(zhì),通過一個可執(zhí)行程序引用的dll和api信息可以粗略...
且4個隱含層中間間隔設(shè)置有dropout層。用于輸入合并抽取的高等特征表示的深度神經(jīng)網(wǎng)絡(luò)包含2個隱含層,其***個隱含層的神經(jīng)元個數(shù)是64,第二個神經(jīng)元的隱含層個數(shù)是10,且2個隱含層中間設(shè)置有dropout層。且所有dropout層的dropout率...